
KIT – University of the State of Baden-Wuerttemberg and  

National Research Center of the Helmholtz Association 

Jens Kehne, Marius Hillenbrand 

Operating Systems Group, Department of Computer Science 

www.kit.edu 

Microkernel Construction 
I.1 – Introduction, Motivation, Problems 

Lecture Summer Term 2017 
Wednesday 15:45-17:15 R131, 50.34 (INFO) 
 



Operating Systems Group 

Department of Computer Science 

2 26.04.2017 

 

Staff 

Jens Kehne 

PhD student since June 2012 

Email: kehne@kit.edu 

 

Marius Hillenbrand 

PhD student since July 2011 

Email: marius.hillenbrand@kit.edu 

 

Meeting Times 

By arrangement via e-mail 

Bldg. 50.34, Room 155 / 160 

 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



Operating Systems Group 

Department of Computer Science 

3 26.04.2017 

 

Background 

L4Ka project (http://l4ka.org) 

Fiasco.OC (http://os.inf.tu-dresden.de/fiasco/) 

seL4 (http://seL4.systems) 

OKL4 (http://www.ok-labs.com/products/okl4-microvisor) 

 

Kevin Elphinstone and Gernot Heiser: ɀFrom L3 to seL4: 
What Have We Learnt in 20 Years of L4 Microkernels?Ɂ 
 

Slides in Ilias 

Password: MKCSS17 
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Purpose of Operating Systems 

Every computer runs an OS 

 

Abstract from the hardware 

Interrupts, exceptions 

Provide common services 

Protection (process) 

Execution (thread) 

Device/Resource management (socket) 

Persistence of data (file) 

Bridge semantic gap 

Application demands vs. hardware provides 
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Purpose 
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Operating System Designs 

application-specific monolithic 

µ-kernel with object interfaces 

Ultimate flexibility 

Ultimate minimalism 

Ultimate performance 

Normal programming 

paradigm 

Proprietary and 

incompatible solutions 

Standard interface 

Runs programs from 

different vendors 

Limited extensibility 

Limited flexibility 

Standard interface 

User-defined interfaces 

Runs subsystems from 

different vendors 

Good flexibility 

Good minimalism 

Good performance 

Difficult to use 

Different paradigm 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



Operating Systems Group 

Department of Computer Science 

7 26.04.2017 

 

Monolithic Kernels – Advantages 

Kernel has access to everything 

All optimizations are possible 

All techniques/mechanisms/concepts can be implemented 

Kernel extended by adding more code 

App App App 

Hardware 

Linux 

Driver Driver 

TCP/IP EXT2 
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Linux Kernel Evolution (.tar.gz) 

Linux 4.10.12: 

162 MB .tar.gz 

15M lines of code 
(using “sloccount”) 
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Approaches to Tackling Complexity  

Monolithic approaches 

Layered Kernels 

Modular Kernels 

Object Oriented Kernels  

Alternatives 

Extensible Kernels 

Managed kernels  

Hypervisors 

Microkernels 
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µ-Kernel Based Systems 
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µ-Kernel Based Systems 
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Linux 

Hardware 

L4 -kernel 

L4Linux 

App App App App App App 

Monolithic System µ-Kernel Based 
Monolithic System Smaller trusted 
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Smaller trusted 
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µ-Kernel Based Systems 
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What if address space 
switches were for free? 
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µ-Kernel Based 
Systems 
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Microkernel Based Systems 
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Microkernel Based Systems 
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Microkernel Based Systems 
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History 

Monolithic kernels 

1st-generation µ-kernels 

Mach   

Amoeba      

(L3)            

2nd-generation µ-kernels 

Exokernel   

L4Ka::Pistachio                 

3rd-generation µ-kernels 

Fiasco.OC 

seL4 

CMU, OSF 

Vrije Universiteit 

GMD 

MIT 

GMD / IBM / UKa Recursive Address Spaces 

External Pager 

User-Level Driver 
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TU Dresden 

UNSW/NICTA 

Object capability system 

Formal verification 
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The Great Promise 

 Coexistence of different 

 APIs 

 File systems 

 OS personalities 

 Flexibility 

 Extensibility 

 Simplicity 

 Maintainability 

 Security 

 Safety IBM WorkPlace OS: 
~2,000,000,000 US$ 

 SLOW 

 INFLEXIBLE 

 LARGE 

The Big Disaster 
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Microkernel Based Systems: 
The Challenge 

Hardware 

L4 µ-kernel 
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Mach: 

The 100-s Disaster 
25 MHz 386                  50 MHz 486                90 MHz Pentium             133 MHz Alpha 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 
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~2.400 cycles 

~140.000 
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Thesis 

A µ-kernel does the job if 

properly designed and 

carefully implemented. 

 Minimality 

 Architectural 
Integration 

 Elegance 

 Efficiency 

 Flexibility 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



Operating Systems Group 

Department of Computer Science 

25 26.04.2017 

 

Thesis 

A µ-kernel does the job if 

properly designed and 

carefully implemented. 

 Minimality 

 Architectural 
Integration 

 Elegance 

 Efficiency 

 Flexibility 

When analyzing IPC performance, 

 

cycles are not the only thing to consider! 
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99,85%

0,15%

L2 cache 

 8192 cache lines (256K) 

 12 lines used for IPC 

98.83%

1,17%

L1 cache 

 1024 cache lines (16K + 16K) 

 12 lines used for IPC 

Cache Working Sets 
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Multi-Processor Architectures 

Synchronization 

Bus locks 

Inter-processor interrupts 

NUMA behavior 

Simultaneous multithreading (HyperThreading) 
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Small Kernel ≠  Small Problem  

Security 

Performance 

Multiprocessor 

Scheduling 

Memory 

Devices 

Persistence 

Fault tolerance 

Quality of service 

Portability 

Formal verification 

Software engineering 
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 Address Spaces 

 Threads 

Mapping 

IPC 

-Kernel Design 

A µ-kernel does no real work 

µ-kernel services are only required to overcome µ-kernel 
constraints (i.e., protection through address spaces) 

 

Therefore, µ-kernels have to be infinitely fast!   

Minimality is the key! 
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Setup shared memory regions 

map 

Address Spaces – Mapping 
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Address Spaces – Mapping 

unmap 

 Revoke shared memory regions 
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Address Spaces – Mapping 

grant 

 Donate memory regions to others 

 Frees up virtual memory in the granting space 

 Useful for file servers 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 
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Threads – IPC 

A 

B 

C 

 Enable controlled communication across address 

space boundaries 
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User-Level Device Drivers 

A 

B 

Disk 
Net Gfx 

IRQ IRQ IRQ 

C 
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EX    IPC 

res    IPC 

Exception Handling 
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exception msg 
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PF    IPC 

res    IPC 

Page Fault Handling 

Pager Application 

map msg 

"PF" msg 
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Tolerated Concepts 

A concept is tolerated in the -kernel if … 

competing user-level implementations 

would violate system requirements.  

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 
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Functional Requirements 

Principle of independence 
Subsystem S provides guarantees independent of S’ 

Principle of integrity 

Other subsystems can rely on independence guarantees 

Example: performance isolation, memory isolation 

 

S
1
 S

2
 

S’ 
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Requirement: Address Spaces 

µ-kernel must hide hardware address spaces 

Otherwise, integrity principle is violated 

Must permit arbitrary protection schemes 

Including non-protection …  

Solution: recursive construction of address spaces outside 
the kernel 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 
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Physical Memory 

Initial AS 

Pager 1 Pager 2 

Pager 3 

Pager 4 

Application 

Application Application 

Application 

Driver 

Driver 

Recursive Address Spaces 
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Requirement: IPC 

IPC = inter-process communication 

Inherently required in µ-kernel with threads 

 

Transfer messages between endpoints 

Threads (e.g., Pistachio) 

IPC gates (e.g., Fiasco.OC) 

 

Contractual 

Sender determines what to send 

Receiver agrees to receive the information 
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Requirement: Threads 

A thread  is an activity inside an address space with 

registers 

instruction pointer 

stack pointer 

state information 

() := address space of thread  

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



Operating Systems Group 

Department of Computer Science 

44 26.04.2017 

 

Why Tolerate Threads in -Kernels? 

How to guarantee ɀfa i r Ɂ CPU access for all activities? 

 

Need a trusted intermediary (the kernel) to multiplex 

This means policy in the kernel, which is BAD™  

 

Unfortunately, no better solution exists 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 
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Size Comparison 

Linux 
15 million lines 

Mach 4  
90,000 lines 

L4Ka::Pistachio 
60,000 lines 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

Fiasco.OC 
110,000 lines 

seL4 
47,000 lines 
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Course Contents 

You do learn 

How to design a µK 

Why L4 is sooooo fast 

Reasons why others failed 

Things we screwed up 

Nitty-gritty details about x86 

Some OS bashing…  

More cool stuff… 

You don’t  learn 

How to construct a system 
on a µK 

Linux dos and don’ts  

Why operating system X is 
better than Y 
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Course Overview 

Overview, Motivation, Problems 

Threads, System-calls, and Thread Switching 

TCBs and Address Space Layout 

IPC Functionality and Implementation 

Dispatching 

Virtual Memory and Mapping Database 

Interrupts, Exceptions and CPU Virtualization 

Security 

Many algorithms, often influencing the system design. 
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Next Lecture 

 
 

 
Next lecture: 
  
     
 

    Threads, System Calls, Thread Switching 
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