
KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

Jens Kehne, Marius Hillenbrand

Operating Systems Group, Department of Computer Science

www.kit.edu

Microkernel Construction
I.1 – Introduction, Motivation, Problems

Lecture Summer Term 2017
Wednesday 15:45-17:15 R131, 50.34 (INFO)

Operating Systems Group

Department of Computer Science

2 26.04.2017

Staff

Jens Kehne

PhD student since June 2012

Email: kehne@kit.edu

Marius Hillenbrand

PhD student since July 2011

Email: marius.hillenbrand@kit.edu

Meeting Times

By arrangement via e-mail

Bldg. 50.34, Room 155 / 160

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

3 26.04.2017

Background

L4Ka project (http://l4ka.org)

Fiasco.OC (http://os.inf.tu-dresden.de/fiasco/)

seL4 (http://seL4.systems)

OKL4 (http://www.ok-labs.com/products/okl4-microvisor)

Kevin Elphinstone and Gernot Heiser: ɀFrom L3 to seL4:
What Have We Learnt in 20 Years of L4 Microkernels?Ɂ

Slides in Ilias

Password: MKCSS17

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

http://l4ka.org/
http://os.inf.tu-dresden.de/fiasco/
http://os.inf.tu-dresden.de/fiasco/
http://os.inf.tu-dresden.de/fiasco/
http://os.inf.tu-dresden.de/fiasco/
http://sel4.systems/
http://sel4.systems/
http://www.ok-labs.com/products/okl4-microvisor
http://www.ok-labs.com/products/okl4-microvisor
http://www.ok-labs.com/products/okl4-microvisor
http://www.ok-labs.com/products/okl4-microvisor
http://www.ok-labs.com/products/okl4-microvisor
http://www.ok-labs.com/products/okl4-microvisor

Operating Systems Group

Department of Computer Science

4 26.04.2017

Purpose of Operating Systems

Every computer runs an OS

Abstract from the hardware

Interrupts, exceptions

Provide common services

Protection (process)

Execution (thread)

Device/Resource management (socket)

Persistence of data (file)

Bridge semantic gap

Application demands vs. hardware provides

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

5 26.04.2017

Purpose

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Hardware

Operating

System

App App App

Application

documents

windows
threads

coroutines

symbols
stacks & heaps

arrays & structures

variables

modules

procedures

statements

Hardware
bit

word

register byte

instruction

Operating System file

address space

socket

semaphore

IPC

process

monitor

event
segment

mutex

priority

ACL
thread

pipe page task

schedule

Operating Systems Group

Department of Computer Science

6 26.04.2017

Operating System Designs

application-specific monolithic

µ-kernel with object interfaces

Ultimate flexibility

Ultimate minimalism

Ultimate performance

Normal programming

paradigm

Proprietary and

incompatible solutions

Standard interface

Runs programs from

different vendors

Limited extensibility

Limited flexibility

Standard interface

User-defined interfaces

Runs subsystems from

different vendors

Good flexibility

Good minimalism

Good performance

Difficult to use

Different paradigm

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

7 26.04.2017

Monolithic Kernels – Advantages

Kernel has access to everything

All optimizations are possible

All techniques/mechanisms/concepts can be implemented

Kernel extended by adding more code

App App App

Hardware

Linux

Driver Driver

TCP/IP EXT2

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

8 26.04.2017

Linux Kernel Evolution (.tar.gz)

Linux 4.10.12:

162 MB .tar.gz

15M lines of code
(using “sloccount”)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

9 26.04.2017

Approaches to Tackling Complexity

Monolithic approaches

Layered Kernels

Modular Kernels

Object Oriented Kernels

Alternatives

Extensible Kernels

Managed kernels

Hypervisors

Microkernels

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

10 26.04.2017

µ-Kernel Based Systems

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Hardware

Linux

Hardware

L4 -kernel

?

App App App App App App

Monolithic System µ-Kernel Based
System

Roll-your-own
OS

Operating Systems Group

Department of Computer Science

11 26.04.2017

µ-Kernel Based Systems

Hardware

Linux

Hardware

L4 -kernel

L4Linux

App App App App App App

Monolithic System µ-Kernel Based
Monolithic System Smaller trusted

computing base

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

12 26.04.2017

Smaller trusted

computing base

µ-Kernel Based Systems

Hardware

Linux

Hardware

L4 -kernel

L4Linux

App App App App App App

Monolithic System µ-Kernel Based
Monolithic System

What if address space
switches were for free?

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

13 26.04.2017

App App App

Hardware

Linux

Driver Driver

TCP/IP EXT2

Hardware

L4 -kernel

App App App

L4Linux

Driver Driver

TCP/IP EXT2

Monolithic System µ-Kernel Based
Monolithic System

Multi-Server System

Net Drv IDE Drv

TCP/IP EXT2

Hardware

L4 -kernel

App App App

µ-Kernel Based Systems

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

14 26.04.2017

µ-Kernel Based
Systems

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Net Drv IDE Drv

TCP/IP EXT2

Hardware

Linux

Hardware

L4 -kernel

L4Linux

App App App App App App

Driver Driver

TCP/IP EXT2

Driver Driver

TCP/IP EXT2

Monolithic System µ-Kernel Based
Monolithic System

Hardware

L4 -kernel

Multi-Server System

App App App

Hardware
bit

word register
byte

instruction

Application

documents

windows
threads

coroutines

symbols
stacks & heaps

arrays & structures

variables

modules

procedures

statements

µ-Kernel
address space

thread

Server Page
Server Mutex Server Socket Server

File

Operating Systems Group

Department of Computer Science

15 26.04.2017

Microkernel Based Systems

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Hardware

L4 -kernel

L4Linux

App App App

µ-Kernel Based
Server Consolidation

L4Linux L4Linux

Driver Driver

TCP/IP EXT2

Hardware

Linux

App App App

Monolithic System

Driver Driver

TCP/IP EXT2

Hardware

L4 -kernel

L4Linux

App App App

µ-Kernel Based
Monolithic System

Net Drv IDE Drv

TCP/IP EXT2

Hardware

L4 -kernel

Multi-Server System

App App App

Operating Systems Group

Department of Computer Science

16 26.04.2017

Microkernel Based Systems

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Hardware

L4 -kernel

App App App

Coupling with
Real-Time Systems

L4Linux
RT

System

Driver Driver

TCP/IP EXT2

Hardware

Linux

App App App

Monolithic System

Driver Driver

TCP/IP EXT2

Hardware

L4 -kernel

L4Linux

App App App

µ-Kernel Based
Monolithic System

Net Drv IDE Drv

TCP/IP EXT2

Hardware

L4 -kernel

Multi-Server System

App App App

Hardware

L4 -kernel

Linux

App App App

µ-Kernel Based
Server Consolidation

Linux Linux

Operating Systems Group

Department of Computer Science

17 26.04.2017

Microkernel Based Systems

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Driver Driver

TCP/IP EXT2

Hardware

Linux

App App App

Monolithic System

Driver Driver

TCP/IP EXT2

Hardware

L4 -kernel

L4Linux

App App App

µ-Kernel Based
Monolithic System

Net Drv IDE Drv

TCP/IP EXT2

Hardware

L4 -kernel

Multi-Server System

App App App

Hardware

L4 -kernel

Linux

App App App

µ-Kernel Based
Server Consolidation

Linux Linux

Hardware

L4 -kernel

App App App

Coupling with
Real-Time Systems

L4Linux
RT

System

Hardware

L4 -kernel

App App App

Thin Clients

Native

Java

Embd.

Java

App

Hardware

L4 -kernel

Specialized Systems

Specialized

Component

Hardware

L4 -kernel

App App App

Coupling with
Secure Systems

L4Linux
Secure

System

Operating Systems Group

Department of Computer Science

18 26.04.2017

History

Monolithic kernels

1st-generation µ-kernels

Mach

Amoeba

(L3)

2nd-generation µ-kernels

Exokernel

L4Ka::Pistachio

3rd-generation µ-kernels

Fiasco.OC

seL4

CMU, OSF

Vrije Universiteit

GMD

MIT

GMD / IBM / UKa Recursive Address Spaces

External Pager

User-Level Driver

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

TU Dresden

UNSW/NICTA

Object capability system

Formal verification

Operating Systems Group

Department of Computer Science

19 26.04.2017

The Great Promise

 Coexistence of different

 APIs

 File systems

 OS personalities

 Flexibility

 Extensibility

 Simplicity

 Maintainability

 Security

 Safety IBM WorkPlace OS:
~2,000,000,000 US$

 SLOW

 INFLEXIBLE

 LARGE

The Big Disaster

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

20 26.04.2017

Microkernel Based Systems:
The Challenge

Hardware

L4 µ-kernel

Net Drv IDE Drv

TCP/IP

Exec Serv

SCSI Drv KBD Drv

EXT2 FS MM Serv

Proc Serv GFX Serv Swap Serv

sh gcc less emacs twm

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

21 26.04.2017

Mach:

The 100-s Disaster
25 MHz 386 50 MHz 486 90 MHz Pentium 133 MHz Alpha

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

22 26.04.2017

0

100

200

300

400

0 2000 4000 6000

msg len

Mach

raw copy

[µs]

0

50

100

0 50 100 150

msg len

[µs]

Mach

L4

IPC Costs (486, 50 MHz)

L4

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

23 26.04.2017

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

100 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800

Mach 486

Mach Alpha

Chorus 486

Spin Alpha

L4 Pentium

average cycles between successive IPCs

o
v
e

rh
e

a
d

 d
u

e
 t

o
 I
P

C

Overhead due to IPC

~2.400 cycles

~140.000

cycles

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

24 26.04.2017

Thesis

A µ-kernel does the job if

properly designed and

carefully implemented.

 Minimality

 Architectural
Integration

 Elegance

 Efficiency

 Flexibility

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

25 26.04.2017

Thesis

A µ-kernel does the job if

properly designed and

carefully implemented.

 Minimality

 Architectural
Integration

 Elegance

 Efficiency

 Flexibility

When analyzing IPC performance,

cycles are not the only thing to consider!

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

26 26.04.2017

Processor-DRAM Gap (Latency)

µProc

60%/yr.

DRAM

7%/yr.

1

10

100

1000

DRAM

CPU

1
9

8
0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

1
9

8
2

Processor-Memory
Performance Gap
(grows 50% / year)

P
e
rf

o
rm

a
n

c
e

Time

“M o o r e ’s L a w ”

Slide originally from
Dave Patterson, Parcon 98

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

27 26.04.2017

99,85%

0,15%

L2 cache

 8192 cache lines (256K)

 12 lines used for IPC

98.83%

1,17%

L1 cache

 1024 cache lines (16K + 16K)

 12 lines used for IPC

Cache Working Sets

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

28 26.04.2017

Multi-Processor Architectures

Synchronization

Bus locks

Inter-processor interrupts

NUMA behavior

Simultaneous multithreading (HyperThreading)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

29 26.04.2017

Small Kernel ≠ Small Problem

Security

Performance

Multiprocessor

Scheduling

Memory

Devices

Persistence

Fault tolerance

Quality of service

Portability

Formal verification

Software engineering

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2014 Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

30 26.04.2017

 Address Spaces

 Threads

Mapping

IPC

-Kernel Design

A µ-kernel does no real work

µ-kernel services are only required to overcome µ-kernel
constraints (i.e., protection through address spaces)

Therefore, µ-kernels have to be infinitely fast!

Minimality is the key!

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

31 26.04.2017

Setup shared memory regions

map

Address Spaces – Mapping

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

32 26.04.2017

Address Spaces – Mapping

unmap

 Revoke shared memory regions

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

33 26.04.2017

Address Spaces – Mapping

grant

 Donate memory regions to others

 Frees up virtual memory in the granting space

 Useful for file servers

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

34 26.04.2017

Threads – IPC

A

B

C

 Enable controlled communication across address

space boundaries

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

35 26.04.2017

User-Level Device Drivers

A

B

Disk
Net Gfx

IRQ IRQ IRQ

C

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

36 26.04.2017

EX IPC

res IPC

Exception Handling

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

EAX
SP
IP

…

EAX
SP
IP

…

Exception

Handler
Application

continue msg

exception msg

Kernel modifies register

contents according to reply

message

Operating Systems Group

Department of Computer Science

37 26.04.2017

PF IPC

res IPC

Page Fault Handling

Pager Application

map msg

"PF" msg

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

38 26.04.2017

Tolerated Concepts

A concept is tolerated in the -kernel if …

competing user-level implementations

would violate system requirements.

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

39 26.04.2017

Functional Requirements

Principle of independence
Subsystem S provides guarantees independent of S’

Principle of integrity

Other subsystems can rely on independence guarantees

Example: performance isolation, memory isolation

S
1
 S

2

S’

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

40 26.04.2017

Requirement: Address Spaces

µ-kernel must hide hardware address spaces

Otherwise, integrity principle is violated

Must permit arbitrary protection schemes

Including non-protection …

Solution: recursive construction of address spaces outside
the kernel

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

41 26.04.2017

Physical Memory

Initial AS

Pager 1 Pager 2

Pager 3

Pager 4

Application

Application Application

Application

Driver

Driver

Recursive Address Spaces

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

42 26.04.2017

Requirement: IPC

IPC = inter-process communication

Inherently required in µ-kernel with threads

Transfer messages between endpoints

Threads (e.g., Pistachio)

IPC gates (e.g., Fiasco.OC)

Contractual

Sender determines what to send

Receiver agrees to receive the information

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

43 26.04.2017

Requirement: Threads

A thread  is an activity inside an address space with

registers

instruction pointer

stack pointer

state information

() := address space of thread 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

44 26.04.2017

Why Tolerate Threads in -Kernels?

How to guarantee ɀfa i r Ɂ CPU access for all activities?

Need a trusted intermediary (the kernel) to multiplex

This means policy in the kernel, which is BAD™

Unfortunately, no better solution exists

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

45 26.04.2017

Size Comparison

Linux
15 million lines

Mach 4
90,000 lines

L4Ka::Pistachio
60,000 lines

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Fiasco.OC
110,000 lines

seL4
47,000 lines

Operating Systems Group

Department of Computer Science

46 26.04.2017

Course Contents

You do learn

How to design a µK

Why L4 is sooooo fast

Reasons why others failed

Things we screwed up

Nitty-gritty details about x86

Some OS bashing…

More cool stuff…

You don’t learn

How to construct a system
on a µK

Linux dos and don’ts

Why operating system X is
better than Y

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

47 26.04.2017

Course Overview

Overview, Motivation, Problems

Threads, System-calls, and Thread Switching

TCBs and Address Space Layout

IPC Functionality and Implementation

Dispatching

Virtual Memory and Mapping Database

Interrupts, Exceptions and CPU Virtualization

Security

Many algorithms, often influencing the system design.

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

48 26.04.2017

Next Lecture

Next lecture:

 Threads, System Calls, Thread Switching

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

